

# Intermediate long-lived nuclear waste management: an integrated approach to assess the long-term behaviour of cement-based materials in the context of deep disposal

C. GALLÉ\*



\* French Atomic Energy Commission (CEA, Saclay)
Nuclear Energy Division / Department of Physico-Chemistry





- Introduction and general context
- Overall strategy for concrete long-term behaviour (L-TB) studies
- L-TB in unsaturated environment (interim storage)
- L-TB in saturated environment (deep disposal)
- Conclusion

Contributors (LECBA Laboratory): H. Peycelon, P. Le Bescop, S. Bejaoui, V. L'Hostis, B. Bary, P. Bouniol, C. Richet



Programmes supported by: CEA, ANDRA, AREVA Group, EdF

## Context / Global operational and R&D strategy

#### General context of research activities

- French nuclear ILL & HL wastes management policy → ruled by the Dec.
   30, 1991 French Parliament law = 3 main lines of research (1991-2006):
  - ① Partitioning & transmutation (CEA)
  - ② Deep geological repository (ANDRA)
  - ③ Waste conditioning & long-term interim storage (CEA)













#### 2006: a new start in the French strategy for wastes management

#### Second phase related to all radioactive wastes



- Since June 28, 2006 a new law determines the orientations of the research dedicated to waste management: main dead-line 2012 with a public debate
- New lines of the law:
  - Spent fuel treatment: Partitioning and transmutation (leader CEA)
  - Retreavable disposal in deep geological formation (leader ANDRA)
  - Conditioning of wastes and <u>temporary</u> storage (<u>leader ANDRA</u>)







## Disposal is now identified as the reference solution

## Functional analyses (interim storage & disposal)

#### Safety assessment and performance analysis of the facilities

- To guarantee waste package (wp) confinement (no dispersion) and mechanical properties (wp recovery) during interim storage
- To limit the radionuclides (RN) release during disposal phase



- Parameters to be evaluated at t<sub>0</sub> (wp integrity)
- Parameters to be monitored during wp storage life-time
- Most favourable storage conditions for wp
- Recovery phase possible (300 years)?
- Wp state at 300 years compatible with disposal phase entrance?



Storage design



- Wp chemical degradation related to underground water leaching
- Transport properties evolution during wp life-time
- RN physico-chemical state and location with time
- Cracking intensity and location predictability
- Amount of H<sub>2</sub> gas generated by radiolysis
- Corrosion rate and products in alkaline medium
- Behaviour of organic matter in alkaline medium



Mix storage/disposal design



#### Concrete long-term evolution key phenomenologies

### Wp life-time environments / key phenomena & potential impacts





#### Basic operational modelling strategy





Waste package physical & mechanical states description + RN migration

## Key identified topics for the wp long-term storage evolution



- Radiolysis of embedding & overpacking cementitious matrices
  - H<sub>2</sub> gas generation and release (source term) → facility safety
  - Gas overpressures (wp mechanical behaviour) → wp bursting
- Concrete container air carbonation
  - Low pH propagation front → reinforcements depassivation = corrosion
  - Calcite (CaCO<sub>3</sub>) precipitation → radiolytic H<sub>2</sub> gas release lowering
- Degradation of reinforced concrete related to corrosion
  - Expansive corrosion products formation → wp damaging
  - Alteration of wp confinement property
  - Wp recovery impossibility
  - Waste-form re-encapsulation (disposal entrance phase compatibility)?



8

#### Radiolysis problematics in cementitious media

## Radiolysis: decomposition of pore-water by ionizing radiations

- Estimation of the H<sub>2</sub> gas wp source term (chemo-transport coupling)
- Evaluation of the wp gas overpressurization risk (mechanical effect)



Data analysis of real waste package tests case + simulation Validation experiments → model robustness evaluation (*CHEMSIMUL*)







(Bouniol, 2004)

#### Concrete atmospheric carbonation

 Air carbonation: a key factor for corrosion process of reinforced concrete structures (pH drop at the reinforcement/concrete interface)



- Evaluation of the natural carbonation front propagation kinetics
- → Concrete properties, temperature and relative humidity conditions

Development of a simplified chemo-transport model Experimental validation through accelerated carbonation tests and field data



## Corrosion of reinforced concrete structures: CIMETAL Project

- Operational objectives: concrete structures life-time evaluation & ruin prevention
- Scientific objectives: phenomenology understanding, models development & validation



### Main scientific aspects:

- CIM 1: Phenomenology
  - Corrosion rates & products + transition conditions between passive - active states
  - Corrosion model development → unsaturated conditions (carbonation)
- CIM 2: Mechanical behaviour
  - Mechanical impact of corrosion products growth (data acquisition)
  - Concrete damage model development
- CIM 3: Long-term prediction
  - Phenomenological knowledge & models validation through field experiences





(L'Hostis et al., 2005)

## Corrosion: phenomenological knowledge and modelling

Concrete pore-water / FeE500 corrosion rates and products





CaCO<sub>3</sub>, pH=8.3 V<sub>corr</sub>=300 μm/y. Lepidocrocite, magnetite



CaCO<sub>3</sub> + SiO<sub>2</sub> (am), pH=8.3 V<sub>corr</sub>=180 µm/y. Magnetite, siderite



 $CaCO_3 + SiO_2$  (am) + NaHCO<sub>3</sub>, pH=9.1  $V_{corr}$ =80 µm/y. (GR CO<sub>3</sub><sup>2</sup>-)



 $CaCO_3 + SiO_2$  (am) + NaHCO<sub>3</sub> +  $CaSO_4$ , pH=8.0  $V_{corr}$ =80  $\mu$ m/y. Calcite, Ferroxyhite?

 Damage modelling: through-going cracks appearance delay (exp. / sim.)



• Estimation of average corrosion rates in natural analogue systems



## Key identified topics for the wp long-term disposal evolution

- Concrete leaching by underground waters leading to:
  - Chemical degradation of cementitious phases
  - Dissolution / precipitation processes
  - Microstructure and transport properties evolution (feedback effect)
  - Mechanical effect (expansive phenomena, cracking...)
  - Impact on radionuclides (RN) transport

Chemical evolution, transport properties, mechanical performances and RN transport are strongly coupled problematics







#### Cement-based materials leaching studies in pure water

#### Objective:

 Prediction of cement-based materials chemical degradation in relation with mineralogical, microstructural and transport coefficient changes



# Scientific approach means:

- Phenomenological knowledge of key phenomena and associated parameters
- Models development & numerical simulation (chemistry-transport coupling)

#### Ca<sup>2+</sup> and OH<sup>-</sup> are the main leached species / Migration is controlled by diffusion process





(Adenot, 1992; Le Bescop et al., 2000; Peycelon et al., 2001)

# Leaching studies: materials and chemical environment influence

## Leaching experiments & models validation

|        | T (°C) | Data type | CEM I / Ca <sup>2+</sup> leached | CEM I degraded    |
|--------|--------|-----------|----------------------------------|-------------------|
|        |        |           | mol/dm²/√day                     | thickness mm/√day |
| $\neg$ | 25°C   | Ехр.      | 0.015                            | 0.19              |
|        |        | Mod.      | 0.015                            | 0.17              |
|        | 50°C   | Ехр.      | 0.025                            | 0.29              |
|        |        | Mod.      | 0.026                            | 0.31              |
|        | 80°C   | Ехр.      | 0.043                            | 0.55              |
|        |        | Mod.      | 0.045                            | 0.54              |
|        |        |           |                                  |                   |













0.00

0.20 0.40 0.60 0.80

1.00 1.20 1.40

Planel et al., 2005)

## Micro-Macro transport approach / Mechanics coupling

Ld C-S-H

- Microstructure transport (diffusion) coupled approach (Microstrans)
  - Hydration model + homogeneisation method: properties of an heterogeneous system (REV) based on elementary properties of components (microscale)





(Bejaoui et al., 2003)

## External sulphate attack: phenomenological understanding & CT-M modelling



Phase  $1: Q_1, D_{ei1}$ 

Phase  $2: Q_2, D_{ei2}$ 

### Operatinal modelling approach (wp long-term behaviour)







MOP 2005: decalcification + carbonation + cracking + RN transport +  $D_e = f(\emptyset)$ 

(Peycelon et al., 2001; Richet et al., 2004)

#### Prediction of concrete structures and cemented waste package longterm evolution in storage and disposal context



- Scientific & operational strategy / approach:
  - Phenomenological understanding of dominant processes & mechanisms
  - Phenomenological models development
  - Phenomenologies coupling (ie. Hydrolysis, carbonates, sulphates, T°C...)
  - Chemistry, transport & mechanical processes coupling
  - Simplified modelling tools (MOP) to be integrated in numerical platform
- Areas to be strengthened and associated main future works
  - Chemo-transport and mechanical coupling
  - Microstructure-diffusion model
  - Blended cement
  - Integration of "storage phase" = corrosion impact + (cracking)
  - MOP ability to describe real underground systems (to be strengthened)
  - Capacity to simulate the corrosion in degraded cement-based materials
  - Corrosion model coupling with a mechanical damage model

